This report not to be cited without prior reference to the Council*

- INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA
- * General Secretary Palaegade 2-4 DK 1261 Copenhagen K DEMMARK

CM1980/H:24 Pelagic Fish Committee

Digitalization sponsored by Thünen-Institut

REPORT ON THE ICES-COORDINATED ACOUSTIC SURVEY OF HERRING STOCKS IN 1980

by

R S Bailey
A AglenMarine Laboratory, Aberdeen, Scotland, UK
Institute of Marine Research, Bergen, Norway
Netherlands Institute of Fishery Investigation,
IJmuiden, The NetherlandsN Diner
J SimmondsISTPM, Nantes, France
Marine Laboratory, Aberdeen, Scotland, UK

INTRODUCTION

In accordance with ICES resolution C Res 1979/2:26, a coordinated acoustic survey was carried out in the Orkney-Shetland area of the northwestern North Sea (ICES Division IVa west) in the period 26 June-31 July 1980. Plans for the survey are described in the "Final report on the ICES-coordinated acoustic survey of herring stocks in 1979" (CM 1980/H:3).

The vessels taking part in the survey, their dates and the acoustic and trawling equipment used, are given in Table I. Track charts for each ship and positions of trawl hauls are shown in Figs 1-5. Each ship participating was allocated an area to cover and all ships were requested to survey the statistical rectangle immediately to the south of the Shetland Is. (E848).

This report is compiled from cruise reports provided by participants in the survey.

RESULTS

Distribution of herring

During a preliminary survey of the whole area, SCOTIA found a concentration of herring in the area east and south of Shetland (Fig 5a). East of Fetlar, echotraces were in the form of both midwater plunes (type A) and less intense recordings several metres above the sea bed (type B). The other ships confirmed the area of concentration to the south of Shetland and in addition further concentrations of plume traces were located by THALASSA southwest of Shetland (Fig 1), and by EXPLORER west of Shetland (Fig 4). In the area south-southeast of Shetland, the traces were largely type B. Both TRIDENS and SCOTIA made catches of herring in this area. In other areas, herring echotraces were more patchily distributed either in the form of isolated plunes (type A) or type B traces. The densest concentrations of mostly type B traces recorded by G O SARS towards the end of July were north and northeast of the Orlney Is. There was thus some evidence of a movement during July from the area east of Shetland towards the spawning areas to the north of Orkney and southwest of Shetland.

Identification of echotraces

Positions of both pelagic and bottom trawl hauls are shown in Figs 1-5 and a summar, of catches is given in Tables II-VI. With the exception of those made by TRIDENS, catches of herring were generally small. The percentages of herring in each pelagic trawl haul are shown in Fig 6. Despite the variability, this shows an area to the southeast of Shetland in which hauls were predominantly composed of herring and further areas where herring made up a significant proportion of the catches. In some areas echotraces were close to the sea bed over rough ground and trawling was either not possible or resulted in appreciable gear damage.

As in the previous year, echotrace patterns in the survey area were **extremely** varied. In some areas discrete plume-like records were located (type A) and, in the absence of evidence to the contrary, it is assumed that these were caused by herring shoals. In the area to the east of northern Shetland where this type of trace was seen, the research vessel G A REAY, pelagic trawling for other purposes, made repeated large hauls of herring. In other areas where similar traces occurred, eg to the west of Shetland, confirmation of their identification was not obtained.

The results of trawling given in Tables II-VI demonstrate that herring were not confined to areas where plume echotraces were found. More frequently, they were associated with more dispersed echotraces lying from 5-20m above the sea bed. Trawl hauls through traces of this type contained a variety of species in addition to herring (notably whiting, but also mackerel, squid and Norway pout). Both TRIDENS and G O SARS, however, reported that echotraces in which herring were caught were consistently denser and further from the sea bed than those yielding other species. It is clear from the complexity of traces, nevertheless, that identification of echotraces by inspection is likely to give rise to considerable errors and for this reason the biomass attributable to herring in this type of echotrace has also been estimated using the results of pelagic trawling.

The complexity of echotraces recorded in this year's survey is very similar to that found the previous year and the results confirm the inherent difficulty experienced in identifying individual echotraces in this area. Furthermore, the difficulty experienced by four of the five participating vessels in sampling herring in any quantities raises the possibility that trawling may not in all cases have provided a representative sample of the echotraces investigated.

At night there was some evidence of dispersal of herring shoals but usually they remained within about 30m of the sea bed. In no area was there a well-defined vertical migration to the surface. Catches of herring made by EXPLORER using a bottom trawl (Table V) were small and it is therefore likely that only a small proportion of the herring population was distributed below working depth range of the echointegrators.

Biological data

Length compositions of herring for each statistical rectangle sampled are given in Table VII. Herring caught ranged from 23-37cm, most being rather large herring from 26-34cm in length. Mean values for each rectangle showed little variation, although fish to the south of 59°30'N (ie south of the latitude of Fair Is) were on average about 1cm shorter than those further north. A combined length composition for samples taken by G O SARS, not given here, is very similar to those shown in Table VII.

Age compositions are not yet available from all surveys, but the results from G O SARS are shown in Fig 7. Three-ringers (1976 year-class) were the predominant age group, and there were very few two-ringers. The length compositions of the fish in other samples indicate that most of the herring were three ringers and older and that there were relatively small numbers of the recruiting 1977 year-class.

Available maturity data are summarised in Table VIII. From 27 June-4 July, most fish were at stages 3 or 4, whereas later in the survey from 23-31 July, most were at stages 5 or 6. The small percentage of fish at stage 8 were mostly large fish and were probably spring spawners.

Herring biomass estimates

Four of the five vessels participating in the survey carried out echointegration. On each ship calibrations were performed against standard targets of known target strength. For comparative purposes all biomass estimates were standardised assuming a target strength of herring and other fish of -34dB/kg. The results from each vessel's surveys are given below, and are summarised in Fig 8.

a) G O SARS

The track and positions of trawl stations are shown in Fig 4. Integrator values in eight depth channels were allocated to four categories: herring; bottom fish (ie those less than 20m from the sea bed); other fish; and plankton (including O-group fish).

Average integrator values for herring $(\tilde{M}_{..})$ were calculated for the four subareas shown in Fig 9 in two separate ways. In the first, the echotraces were divided into those judged to be herring and those judged to be other fish on the basis of trawl hauls and the appearance of the traces. In the second, the densities of herring and bottom fish combined were subdivided into their components purely on the composition of trawl catches (given in Table IV). In both cases average densities of herring (\tilde{D}_{H}) were calculated using two different assumptions about target strength, namely that the target strength of a unit weight of fish was independent of length of fish or alternatively introducing a length-dependent target strength relationship. The appropriate formulae were as follows

- 1) $\bar{D}_{H} = 0.15\bar{M}_{H}$ tonnes/km², assuming that the average target strength for all sizes of fish is -34dB/kg:
- 2) $\bar{D}_{H} = \frac{0.15}{24} \bar{L}_{H} \cdot \bar{M}_{H}$ tonnes/lm², assuming that -34dB/kg is the average target

strength for a fish of 24cm length and that the average target strength per kg decreases with 10log L. $L_{\rm H}$ is the mean length of herring in trawl catches in that sub area, and the values used are shown in Fig 9.

Equivalent calculations were carried out for each subarea for herring and bottom fish combined, again making the same two assumptions about target strength and allocating the biomass densities in proportion to the composition of trawl hauls in that subarea (details are given in Table IV). Four alternative estimates of herring biomass in each subarea were thus obtained. Average densities for each subarea are given in Fig 9 and contoured levels of herring density are given in Fig 10.

Estimates of herring and bottom fish biomass for each subarea calculated in the ways described above are given in Table IX. There is good agreement between the estimates made assuming length-dependent and length-independent target strength values and this is largely because of the small length range of herring sampled. The values based on trawl haul data only are smaller than those based on a more subjective allocation of echotraces. A possible explanation for this is that herring were underrepresented in trawl catches because of their greater ability to avoid the trawl. The range of herring biomass estimates obtained by the four methods is 13 000-24 000 tonnes.

Part of the survey area was covered twice during the survey (Fig 3), and the herring biomass estimates on each differed by only 15% of the mean. This indicates that, despite possible systematic errors, the survey gave a reasonably reliable index of abundance.

b) THALASSA

The track and trawl haul positions are shown in Fig 1. Four areas of echotrace concentrations were found, but in only the easternmost of these was there evidence of any appreciable quantities of herring. By night the shoals in this area were large (up to 20-30m high and 250-300m across). By day they were less numerous but denser and were in the form of plumes (20m high and 50m across).

For each statistical rectangle surveyed an estimate of total fish biomass was made assuming an average target strength of -34 dB/hg. Trawling by THALASSA provided insufficient evidence to allocate echotraces to species (Table II) but, using trawl haul data from the other ships and by examination of the echotraces, an estimate was made of the proportion of herring. The results are shown in Fig 8 and the estimate of the herring population in the six statistical rectangles covered was 9 000 tonnes out of a total of 95 000 tonnes fish biomass.

c) EXPLORER

The track and trawl haul positions are shown in Fig 4. The proportion of echointegrator readings attributable to herring was estimated in two ways. First, the contribution of distinct plume traces, the positions of which are shown in Fig 4, was calculated and the entire value was allocated to herring. Second, other fish traces within 30m of the sea bed were allocated from the mean percentage of herring in pelagic trawl hauls in the respective statistical rectangle, or where appropriate in areas smaller than a rectangle. Estimates of herring biomass thus consisted of two components, that present in plume traces, and that in more dispersed traces near the sea bed. Figure 8 shows for each rectangle the estimated total biomass of herring. The estimate for the whole Orkney-Shetland area was approx. 270 000 tonnes of fish, of which 150 000 tonnes was estimated to be herring (100 000 tonnes in the form of plumes).

d) SCOTIA

The track chart and midwater trawl haul positions are shown in Fig 5. After the survey ended, it became apparent that non-linearity in the relationship between input and output voltage in the echointegrator had resulted in considerable underrecording of dense echotraces. This was shown by a wide disparity in the average densities of total biomass (fish and plankton combined) recorded on the SCOTIA and EXPLORER surveys. In retrospect this fault is impossible to rectify, but to provide a rough estimate of herring biomass, the SCOTIA values have been raised by a factor of 6.4, which is the ratio between EXPLORER and SCOTIA mean biomass densities for all species combined (including plankton).

Using the adjusted densities, the fish biomass was allocated to herring and other species in the way described above for the EXPLORER survey. The results for the two halves of the SCOTIA survey are shown in Fig 8. The estimated total of herring for the first survey of the whole Orkney-Shetland area was 210 000 tonnes of which 55 000 tonnes was in the form of recognisable plume traces. On the second survey which covered a smaller area the total was about 70 000 tonnes of herring. It should be stressed, however, that because of the dubiety about the validity of the raising factor mentioned above, these results should be treated with great caution.

DISCUSSION

Since it was not possible for the Planning Group to meet to evaluate these surveys, this discussion is limited to a few comments made in the reports of the participants.

From the vertical distribution of herring found during the survey, it seems likely that most herring were available for echointegration. A far more serious difficulty was that of identifying echotraces in the area surveyed. Only one of the four ships carrying out midwater trawling was able to sample herring in reasonable quantities with any reliability and the composition of most trawl hauls is therefore likely to give a biassed estimate of the composition of mixed traces. The method using trawling to distinguish herring traces from those caused by other species, and allocating the biomass to species from the appearance of the traces, is thus likely to give a more nearly correct estimate. This method has a subjective element, however, and the resulting identifications are likely to be subject to considerable error.

The other unresolved problem is the correct target strength to use for herring and whether it is length dependent. What evidence there is from cage experiments suggests that -34dB/kg may be rather low (Edwards, 1980, ICES CM 1980/B:19), but on the other hand avoidance behaviour of herring in the path of the ship (either sideways or downwards) might result in a lowering of effective target strength by a factor of unknown proportions.

The herring biomass estimates in rectangles covered by more than one ship (Fig 8) indicate considerable variation between the results of the different ships taking part. Excepting the somewhat dubious results from SCOTIA, however, the quantities of herring in the total area south of Shetland appeared to be low on most surveys. On the assumption of target strength used, the total biomass of herring in the Orkney-Shetland area is not likely to have been more than 150-200 000 tonnes.

Table I Vessels participating in the 1980 survey with details of equipment used: Trawling gear Vessel Survey dates Acoustic equipment Pelagic trawl 11m vertical THALASSA . 15-25 July Sirrad EKS38 sounder Simrad QM MK II integrator. opening; semi pelagic trawl 7m vertical opening; bottom trawl 6m vertical opening. TRIDENS 8-17 July Vertical echosounder. Engel trawl Simrad EK38 sounder with G O SARS 23-31 July Pelagic trawl 45 x 15m NORD-10 computer for echomouth; Bottom trawl integration. Ceramic trans-47 x 6m mouth ducer. Simrad EK38 sounder with GOV bottom trawl EXPLORER 10-28 July Aberdeen echointegrator. Magnetostrictive transducer. SCOTIA 26 June-14 July Simrad EK38 sounder with Blue whiting midwater Aberdeen echointegrator. trawl; "Delagic" trawl Ceramic transducer. Table III Catches in pelagic travil hauls made by TRIDENS: Duration Haul. Catches in kg Position Date Shooting time GIII + 2No. (min) 1 60 herring 17 000 59.43N 01.10W 9/7 13.15 2 59.26N 01.35W 9/7 19.25 100 herring 1 000, whiting 2 000 3 60.00N 00.25W 10/7 07.30 25 herring 12 000 4 23 45 59.50N 00.48W 10/7 14.50 herring 500 5 60.01N 01.55W 10/7 21.50 55 whiting 3 000, mackerel 100 6 59.40N 02.00W 11/7 08.20 herring 10, whiting 1 500, 25 mackerel 80 16.30 78 59.36N 00.00W 11/7 35 N. pout 300 59.30N 01.26W 11/7 22.20 20 whiting 1 250, loligo 1 250 14/7 9 59.00N 00.20W 13.15 sheppy argentine 60 20 14/7 10 59.00N 00.52W 16.20 30 herring 9 000 14/7 whiting 900, herring 100 59.00N 02.06W 21.50 30 11 11.15 12 59.20N 00.30W 15/7 6 herring 3 500 59.20N 01.55W 15 whiting 250 mackerel 1 500, haddock 90 13 15/7 17.00 61.00N 01.29W 16/7 14 07.50 55 85 61.00N 00.42W 11.45 15 16/7 N. pout 200, mackerel 70 16 17.10 45 60.50N 00.00W 16/7 N. pout 350 Q. 40 17 60.35N 00.00W 17/7 09.40 N. pout 1 500

1

11

Ser sent peloyics :

Table II

Catches in trawl hauls made by THALASSA:

B.	Gess	Date Bour GMT	Position	Depth A	Daracion (mins)	Estring kg Î ca	Whiting	Norway pout	Maakerel	Sacock	Cod	Other
	1					•	, <u>, , , , , , , , , , , , , , , , , , </u>					
i	P	16-7	59°28 N	69	24	0	0,4	0	0	1-0 2	ND GIVE	241
		16h00	2*17 10		and have been	100			arata pa		0	Bene
2	P	17-7	59°45 N	76	out and	0,9	a, 01-117					
		10000	3°02 N	rah (199	36	31,0	0	0	16.5	0,5	0.	0,1
3	2	17-7	59° 36 N	73	44	13,5					in singer	
	子子	13h00	2*53 1			27,2	0	0	40.5		0	0,1
4	P	17-7	59° 38 8	80	30	5,5	in the set					
		201100	2°58 M	80	30	29,1	0,4	٥	5,5	0	0	2
	1000	18-7	59°52 N			projes (66		R. Malei	de estado			
5	P	8200	3°44 W	114 .	55	0	0, 69	0	7,2	o	0	3,0
		19-7	59°08 a									
6	P	7500	3°52 8	112	53	0,6 27,6	0	Ø	0	0,2	0	0,1
,	180	19-7	59°05 N			0						
	P	15h00	4°05 R	83	44	1	0	0	• 0	0	0	0
3	P .	20-7	39° 12 N	122	61	0,2	0					
	i iby	17560	3°69 %			1		. 0	0	,	0	0,5
•	28	23-7	59°46 N	136	63	0	99	156		100.00		
		7200	3°49 W			1		130	0	121	63	163
10	SP	23-7	59°33 n	140	40	0	66. I Q					
	10	11000	3°35 W		40	1	10	27	0	64	17	187
1	62	23-7	59° 47 N	1 <u>1</u> 1 1	2 김 것은	0.5						
- 0	82	14000	2°55 N	77	32	31,5	1,6	5	0	16	31	
	EP	24-7	59°43 H	131	30	0	51-6					
2			24	*0*	28	1	113	70	0	41	58	55
2		9h00	2°05 W	1. 19.32					and the second second			
		9n00 24-7	2°05 R 59°29 R	•••					101.554			
2 ye 3	9			123	43	3,5 30,6	99	4	¢	279	7	65
		24-7	59*29 N	123	43 21	3,5	99 155	4	c	279 75	7	6 5 168

		Trawl St. no.	10	Hour	(Trawl depth	HERRING	MCKEREL.	Sniting	RADDOCK	POUT FOUT	8	SATTR	COLUNIO	FLATFISH	ofner Fish	JELLYFISH	REMARKS (n.r.=not_representative)
	3	183	23	67	87	-		12	128	0,6	29	-	\$2	3	1 35		n.r., outside berring area
	9	185	24	05	25	37	0.	0,2	0.9	**	-	~				30	applied for area B&C
	8	187	24	08	118	-	. 04	27	140		. 37	124	-	6	27		n.r., outside herring area
	8	88	24	94	110	- 1	170	64	104	10	51		1	22		-	n.r., below main recordings
	\$ 1	89	24	21	25	-	0,2	0,4	2		9	•	-	•	**	200	n.r., outside herring area
2	*	190	25	03	100	38	te	28	~	4		*	-	-	0,1		applied for area BaD
	P	193	25	07	105	-32	-	17	0,5	0,2		-		·	00	20	applied for area BaD
	9 1	192	25	16	90	-	-	52	149	~	32	-	94	7	27		n.r., outside herring area
	8 8	193	27	05	70		1	â,	0,5	*	0,1	-	0,8	**	-		applied for area A
	19 1	194	27	09	EO	•	69	160	19	65		•	-	-	**	-	applied for area h
		93	-	13	75		**	÷			3	**	-	3	54	-	n.r. cutside herring area
		96		21	80	306	-	-	. •		• •	-			-	-	applied for area AsB
		97		04	20	0,2	22	5	0,5	2.	0,1	-	-	-	-	100	n.r., towed in plankton layer
			28	74	78	15	1	-	3			6	-	-	1	-	applied for area A.Bab
	P 1		28	19	85	0,2	-	-		-	674	-	12.0		-	-	applied for area A
1	2 2	00	29	03	45	1.		0,9	-	• \$0	*0	-	~		0,2	23	n.r., outside herring erea
	2 2	0	29	06	10	5%	-		-	-		-	~	-		150	n.r., outside herring area
		02	1.	68	60	0,6	7	0,8				**	det .	-		-	applied for area A
			29	14	128	1		63	115	343	6	-		9	2	-	n.r., outside herring area
3	2	04	29	19	130	*			6 1 1	180	-	*	*	-		-	n.r., outside herring area
	2		30	05	70	0.3	-	37	3	-	80	•			-	- 1	applied for area D
1	2	05	30	19	80	*	- C	32	408	10	4	-	3	9	46	-	a.r., outside herring area
2	21	07	30	11	70			294	<i>∴</i> ∎0 1	17	6 5 4	0			2	-	h.r., outside herring sree
P	21	60	30	15	50	-	-	1			~				**	15	n.r., travi not operating properly
7	20	09	31	60	95	9	**	30		-	~		1	0,1	-	-	applied for area D
2	21	10	31	03	75	0,2		1246	59	•		•	-		-	.	applied for area BAD

Table IV Catches in travi hauls made by G O SARS (kg/hour) (P = pelagic, B = bottom), with details of travi hauls used for allocation of biomass:

177

Haul No.	Date	Position		Catch (k, HERRING	the second	
No. 170 171 172 174 175 176 177 178 179 180 181 182 183 186 187 188 189 190 191 192	12 July 12 July 13 July 14 July 14 July 14 July 15 July 15 July 17 July 17 July 19 July 20 July 20 July 21 July 22 July 23 July 23 July	59°48 'N 60°43'N 60°13'N 60°10'N 59°01'N 59°01'N 59°00'N 59°33'N 59°20'N 59°20'N 59°20'N 59°40'N 59°40'N 59°40'N 59°42'N 59°42'N 59°42'N 59°49'N 59°29'N 59°58'N 60°16'N 60°09'N	00°27'W 01°41'W 00°33'W 00°34'W 01°01'W 01°02'W 01°01'W 01°05'W 03°33'W 03°33'W 03°33'W 03°33'W 03°33'W 03°33'W 03°33'W 03°33'W 03°35'W 01°45'W 01°45'W 01°45'W 01°46'W 02°25'W 02°27'W 01°42'W	HERRING 1 0 23 10 225 0 1 3 1 3 22 3	OTHERS 330 60 180 120 330 735 240 390 660 240 660 1620 120 450 475 185 380 50 600 350	
and the second se					and the second se	
Note:	other spec	cies were p	redominant	Ly gadoids :	including	Norway pout.
Table	VI Catche	s in pelagi	oredominantl Ic trawl hau	ls, made b	y SCOTIA:	South Contraction
			c trawl hau	ils, made by Catch (k	y SCOTIA:	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Table VII	Percentage les in each haul	agth compositions ampled:	ons of herring	in each statis	tical rectangl	e, weighted b	y estimated nu	mbers of fish	1	t I	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			60°-60°30 W	59°30°-60°N 0°-1°W	59°30°-60°N 1°-2°W	59°30'-60°N 2°-3°W	59-59°30'N	59°-59°30'N	59-59°30'N	59-59°30	'N 58°30'-5	59°N
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								2 - C n	7 1) - • •	3 -4 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	0.2										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0.1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.2			0.008						2.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•5	0.7					1.0	0.1		E 2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.5	0.002									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.5	0.3	0.002									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	3.9	0.004						3.8	200		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.5	1.7	8.0						5.0	5.2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	2.5	0.004						5.8			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											and the second s	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•5	8.3			3.6	7.7						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	8.1	12.6									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.8				7.7						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.8										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.4	7.1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8.4										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9.4									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.7			15.4				2.00		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9.5	10.9						F 2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				5.4						2.2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•5				1.3	San State State				Geleter Sections	2.0	a la haile
-5 0.5 1.0 1.3 35 0.2 2.4 -5 0.2 0.004 0.01 36 0.2 0.004 0.01 -5 37 0.002 Humber 449 275 513 1327 13 320 284 52 19 98 Nean length (am) 30.2 30.8 30.1 30.7 30.9 29.0 29.7 29.4 28.6 29.6 Table VIII Percentage maturity composition of herring: Maturity SCOTIA c 0 SARS Maturity SCOTIA c 0 SARS 4 36.6 10.6 1 7.64 1.2 5 0.2 43.0 1 2 7.64 1.2 5 0.2 43.0 1 30.7 30.9 29.0 29.7 29.4 28.6 29.6			1.6	1.2	0.7		a state of the sta					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•5			and the	1.3		NO CHELL					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.5 6.			12.92.03		GODI LABYS	a sos					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.2		· ·	0.01							
Number Measured 449 275 513 1327 13 320 284 52 19 98 Mean length (cm) 30.2 30.8 30.1 30.7 30.9 29.0 29.7 29.4 28.6 29.6 Table VIII Percentage maturity composition of herring: Naturity SCOTIA G 0 SARS Maturity SCOTIA G 0 SARS 4 38.6 10.6 10.6 1 - - - - 31.8 - 31.8 -							ĝ. 68					
Measured 13 320 284 52 19 98 Mean length (cm) 30.2 30.8 30.1 30.7 30.9 29.0 29.7 29.4 28.6 29.6 Table VIII Percentage maturity composition of herring: Maturity SCOTIA G 0 SARS 32.6 29.6 29.7 29.4 28.6 29.6 Maturity SCOTIA G 0 SARS 32.6 29.6 29.7 29.4 28.6 29.6 Maturity SCOTIA G 0 SARS 32.3 32.0 29.7 29.4 28.6 29.6 Maturity SCOTIA G 0 SARS 30.6 10.6 10.6 10.6 1 -2 7.4 1.2 7 7 31.8 32.6					and the second second second second							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		449	275	513	1327	13	320	284	52	19	98	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean length		S. Selling .							29% 3.0M	17106 41 1	
Table VIIIPercentage maturity composition of herring:NaturitySCOTIAG 0 SARSMaturitySCOTIAG 0 SARSstage27 June-4 July23-31 Julystage27 June-4 July23-31 July50.243.0131.827e41.27-31.8		30.2	30.8	30.1	30.7	30.9	29.0	29.7	20 4	20 6	20 6	
MaturitySCOTIAG 0 SARSstage27 June-4 July23-31 July 1 $ 2$ 7_{e4} 1.2 7 $ 31.8$	()						-,	-)•1	27.4	28.0	29.0	
Maturity SCOTIA G O SARS 4 38.6 10.6 stage 27 June-4 July 23-31 July 5 0.2 43.0 1 - - -		Table	VIII Percent	age maturity c	omposition of 1	herring:					4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Maturi	ty SCOTTA	19-12A 63 3	C 0 5100	applied - 1			4 July 23-	31 July		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				A Tulu					10,	6		
	All a there		27 3 0010-	-, July	23-31 301			0.2				
			7 4					30 T.+T.				
		3	52.5		4.7			P. P			and a second	
5 92•7 4•7 8 1.4 6.5			,,		*•1		8	1.4			adate of the second sec	

1

Superstants and

.....

Table I Abundance of herring and herring + bottom fish (1000 tonnes) estimated by different mathods. G O SANS survey TS = Avarage target strength (dB/kg).

Sub-area Sub-area Sub-area Sub-area

TOTAL

۰.

		Abundance of 1000 tonnes	Abundance of herring + bottom fish, 1000 tonnes				
and the second se	Estimates bas evaluation of values of pur	Integrator	Estimates bas integrator va herring + bot and trawl cat	lues for tom fish			
1	Length dep end ent TS	Length Independent T	Length 5 dependent TS	Length independent TS	Length dependent TS	Length independent	75
	12.1 4.5 0.7 6.5 23.8	10.0 3.6 0.6 5.2 19.4	6.7 3.6 0.4 3.3 14.0	5.9 3.3 0.7 2.8 12.7	15.2 5.8 0.4 9.8 32.4	13.4 5.2 0.8 8.2 27.6	

•

....

Fig 1: Survey track of TEALASSA, 15-25 July 1980, showing positions of trawl hauls and areas of intensive echointegration surveys.

Survey track of TRIDENS, 8-17 July 1980, showing positions of trayl buuls and areas of herring echotraces. Fig 2:

Fig 3: Survey track and stations of G O SARS, 23-31 July 1980. 23-26 July, 27-31 July. 1: Hydrographic station; 2: Palagic trawl; 3: Bottom trawl; 4: Zooplankton station (Juday net).

Fig 4: Survey track of EXPLORER, 10-28 July 1980, showing positions of traul haula (numbered black circles) and area of "plume" schotraces (triangles).

Fig 5: Survey track of SCOTIA, 26 June-14 July 1980, showing position of trawl houls and areas of "plume" echotraces. Baxes show ereas of intensive surveys in which numerous herring echotraces were recorded. Numbered dots = trawl hauls; triangles = "plume" echotraces.

Fig 6: Parcentage of herring by weight in pelagic traul banks. Traul hauls with insignificent catches excluded.

.

SCOTIA (1st survey)

27

6

ECOTIA (2nd survey)

Fig 8: Estimated biomass of herring in thousand tonnes per statistical rectangle on each survey. For the EXPLANE and SCOTIA surveys the number of half hour intogrations per restangle are shown.

0 ŝ

20

1

Fig. (: Subareas A, B, C and D surveyed by G O SAES. $a = size of the subarea, M_{H} = average integrator value for "pure" herring, M_{H} = average integrator value for herring + bottom fish, <math>L_{H} = average$ length for herring, $\bar{L}_{H+B} = average length of herring + bottom fish, <math>\bar{L}_{H} = average$ weight fraction of herring, n = steamed distance (neutical miles) within the subarea.

Fig 10: Distribution of integrator values for herring, 6.0 SARS 5", 23-31 July 1980.